Category Archives: Connecting Ideas

Enhancing Growth Mindset in Math – Learning together

We asked:

How might we, as a community of learners, grow in our knowledge and understanding to enhance the growth mindset of each of our young learners?

As a team, we have completed Jo Boaler’s How to Learn Math: For Students and have shared our thinking, understanding, and learning.

Blending online and face-to-face learning, we worked through the Stanford units outside of school so that we could explore and learn more when together.

This slideshow requires JavaScript.

Here are some of the reflections shared by our team.

As a teacher my goal is to help children approach math and all subject areas with a growth mindset. It is of utmost importance that my students truly know that I believe in them and their ability to succeed!

Everyone my age should know that you should never equate being good at math with speed. Just because someone is a slower problem solver does not mean that they are a weak math student. Rather, sometimes the slower math thinkers are the strongest math thinkers because they are thinking about the problem on a deeper level. Being good at math is about being able to think deeply about the problem and making connections with it.

When talking to yourself about your work and learning new things, reminding yourself that you can try harder and improve is critical to potential success.  People are more willing to persevere through difficult tasks (and moments in life) when they engage in positive self talk.  

Mistakes and struggling, in life and in math, are the keys to learning, brain growth, and success.

Thinking slowly and deeply about math and new ideas is good and advantageous to your learning and growth.

Taking the time to think deeply about math problems is much more important than solving problems quickly.  The best mathematicians are the ones who embrace challenges and maintain a determined attitude when they do not arrive at quick and easy solutions.  

Number flexibility is so powerful for [students]. I love discussing how different students can arrive at the same answer but with multiple strategies. 

Working with others, hearing different strategies, and working strategically through problems with a group helps to look at problems in many different ways.

“I am giving you this feedback because I believe in you.”  As teachers, we always try to convey implicitly that we believe in our students, and that they are valued and loved in our class.  However, that explicit message is extraordinary.  It changes the entire perception of corrections or modifications to an essay–from “This is wrong, you need to make it right” to “I want to help you make this the best it can be,” a message we always intended to convey, but may not have been perceived.  

Good math thinkers think deeply and ask questions rather than speeding through for an answer.

Math is a topic that is filled with connections between big ideas.  Numbers are meant to be manipulated, and answers can be obtained through numerous pathways.  People who practice reasoning, discuss ideas with others, have a growth-mindset, and use positive mathematical strategies (as opposed to memorization) are the most successful.

We learn and share.

#ILoveMySchool

VTR: Sentence-Phrase-Word to dig deeper into Standards for Mathematical Practice

From Making Thinking Visible: How to Promote Engagement, Understanding, and Independence for All Learners:

Sentence-Phrase-Word helps leaners to engage with and make meaning from text with a particular focus on capturing the essence of the test or “what speaks to you.” It fosters enhanced discussion while drawing attention to the power of language. (Ritchhart, Church, Morrison, 207 pag.)

Screen Shot 2014-10-19 at 7.26.45 PMWhat if we read and learn together, as a team? How might we develop deeper understanding?

Screen Shot 2014-10-19 at 7.29.46 PMAs a team of learners, we first read Make sense of problems and persevere in solving them independently and highlighted a sentence, phrase, and work that resonated with us.  In round robin fashion, we read aloud our selected sentence so that every member of the team heard what every other member of the team felt was important.  Just the act of hearing another voice read and callout an idea was impactful.

After completing the Sentence-Phrase-Word Visible Thinking Routine for Make sense of problems and persevere in solving them, we asked everyone to take another Standard for Mathematical Practice to read and markup, highlighting a sentence, a phrase, and a word.

Screen Shot 2014-10-19 at 7.36.57 PM Screen Shot 2014-10-19 at 7.37.09 PM

We divided into teams where each of the remaining Standards of Mathematical Practice were represented.  Each learner shared the SMP that they read highlighting a selected sentence, phrase, and word. My notes are shared below. I was amazed at the new ideas I heard from my colleagues when using this routine.

Screen Shot 2014-10-19 at 7.40.51 PM

Seek diversity of thought. Listen to others.  Hear differently. Promote engagement, understanding, and independence for all.

Learn.


Ritchhart, Ron, Mark Church, and Karin Morrison. “Sentence-Phrase-Word.”Making Thinking Visible: How to Promote Engagement, Understanding, and Independence for All Learners. San Francisco, CA: Jossey-Bass, 2011. 207-11. Print.

 

Deep Dive into Standards of Mathematical Practice

As a team, we commit to make learning pathways visible. We are working on both horizontal and vertical alignment.  We seek to calibrate our practices with national standards.

On Friday afternoon, we met to take a deep dive into the Standards of Mathematical Practice. Jennifer Wilson joined us to coach, facilitate, and learn. We are grateful for her collaboration, inspiration, and guidance.

The pitch:

Screen Shot 2014-10-19 at 8.25.45 PM

The plan:

Goals:

  • I can anticipate Standards for Mathematical Practice that learners will employ during this lesson.
  • I can begin to design lessons incorporating national standards, a learning progression, and a formative assessment plan.

Norms:

  • Safe space
    • I can talk about what I know, and I can talk about what I don’t know.
    • I can be brave, vulnerable, kind, and considerate to myself and others while learning.
  • Celebrate opportunities to learn
    • I can learn from mistakes, and I can celebrate what I thought before and now know.

Resources:

Learning Plan:

Screen Shot 2014-10-19 at 8.38.36 PM

The learning progressions:

Screen Shot 2014-08-16 at 1.21.17 PM

Screen Shot 2014-08-19 at 8.05.42 PM

The slide deck:

As a community of learners, we

Screen Shot 2014-10-19 at 8.50.05 PM Screen Shot 2014-10-19 at 8.50.16 PM

#ILoveMySchool

SMP2: Reason Abstractly and Quantitatively #LL2LU (Take 2)

Screen Shot 2014-09-21 at 3.16.32 PM

We want every learner in our care to be able to say

I can reason abstractly and quantitatively.
(CCSS.MATH.PRACTICE.MP2)

But…What if I think I can’t? What if I have no idea how to contextualize and decontextualize a situation? How might we offer a pathway for success?

We have studied this practice for a while, making sense of what it means for students to contextualize and decontextualize when solving a problem.

Students reason abstractly and quantitatively when solving problems with area and volume. Calculus students reason abstractly and quantitatively when solving related rates problems. In what other types of problem do the units help you not only reason about the given quantities but make sense of the computations involved?

What about these problems from The Official SAT Study Guide, The College Board and Educational Testing Service, 2009. How would your students solve them? How would you help students who are struggling with the problems solve them?

There are g gallons of paint available to paint a house. After n gallons have been used, then, in terms of g and n, what percent of the pain has not been used?
Screen Shot 2014-09-28 at 1.49.19 PM

 

 

 

 

 

A salesperson’s commission is k percent of the selling price of a car. Which of the following represents the commission, in dollar, on 2 cars that sold for $14,000 each?
Screen Shot 2014-09-28 at 1.52.50 PM

 

 

 

 

In our previous post, SMP-2 Reason Abstractly and Quantitatively #LL2LU (Take 1), we offered a pathway to I can reason abstractly and quantitatively. What if we offer a second pathway for reasoning abstractly and quantitatively?

Level 4:
I can create multiple coherent representations of a task by detailing solution pathways, and I can show connections between representations.

Level 3:
I can create a coherent representation of the task at hand by detailing a solution pathway that includes a beginning, middle, and end.   

Beginning:
I can identify and connect the units involved using an equation, graph, or table.

Middle:
I can attend to and document the meaning of quantities throughout the problem-solving process.

End:
I can contextualize a solution to make sense of the quantity and the relationship in the task and to offer a conclusion.

Level 2:
I can periodically stop and check to see if numbers, variables, and units make sense while I am working mathematically to solve a task.

Level 1:
I can decontextualize a task to represent it symbolically as an expression, equation, table, or graph, and I can make sense of quantities and their relationships in problem situations.

What evidence of contextualizing and decontextualizing do you see in the work below?

Screen Shot 2014-09-28 at 5.16.42 PM

Screen Shot 2014-09-28 at 5.16.56 PM

Screen Shot 2014-09-28 at 5.17.10 PM

[Cross-posted on Easing the Hurry Syndrome]

SMP2: Reason Abstractly and Quantitatively #LL2LU (Take 1)

Screen Shot 2014-09-21 at 3.16.32 PM

We want every learner in our care to be able to say

I can reason abstractly and quantitatively.
(CCSS.MATH.PRACTICE.MP2)

I wonder what happens along the learning journey and in schooling. Very young learners of mathematics can answer verbal story problems with ease and struggle to translate these stories into symbols. They use images and pictures to demonstrate understanding, and they answer the questions in complete sentences.

If I have 4 toy cars and you have 5 toy cars, how many cars do we have together?

If I have 17 quarters and give you 10 of them, how many quarters will I have left?

Somewhere, word problems become difficult, stressful, and challenging, but should they? Are we so concerned with the mechanics and the symbols that we’ve lost meaning and purpose? What if every unit/week/day started with a problem or story – math in context? If learners need a mini-lesson on a skill, could we offer it when they have a need-to-know?

Suppose we work on a couple of Standards of Mathematical Practice at the same time.  What if we offer our learners a task, Running Laps (4.NF) or Laptop Battery Charge 2 (S-ID, F-IF) from Illustrative Math, before teaching fractions or linear functions, respectively? What if we make two learning progressions visible? What if we work on making sense of problems and persevering in solving them as we work on reasoning abstractly and quantitatively.  (Hat tip to Kato Nims (@katonims129) for this idea and its implementation for Running Laps.)

Level 4:
I can connect abstract and quantitative reasoning using graphs, tables, and equations, and I can explain their connectedness within the context of the task.

Level 3:
I can reason abstractly and quantitatively.

Level 2:
I can represent the problem situation mathematically, and I can attend to the meaning, including units, of the quantities, in addition to how to compute them.

Level 1:
I can define variables and constants in a problem situation and connect the appropriate units to each.

You could see how we might need to focus on making sense of the problem and persevering in solving it. Do we have faith in our learners to persevere? We know they are learning to reason abstractly and quantitatively.  Are we willing to use learning progressions as formative assessment early and see if, when, where, and why our learners struggle?

Daily we are awed by the questions our learners pose when they have a learning progression to offer guidance through a learning pathway.  How might we level up ourselves? What if we ask first?

Send the message: you can do it; we can help.

[Cross-posted on Easing the Hurry Syndrome]

 

7:20 TED talk and doodle session #TrinityLearns #showyourwork

doodle3

(sketch by @katonims129)

How might we experiment and learn together about creativity, communication, critical reasoning, and collaboration? What if we risk, practice, and share to make our thinking visible? How will we grow and learn if we practice and accept feedback?

Screen Shot 2014-09-18 at 8.30.28 PM

As you can see from the email above, Kato Nims and I have been experimenting with sketch noting or doodling to take visual notes since the beginning of the school year.

Twenty-four of our colleagues responded that they would like to participate on Thursday with several more asking for another session next week because of carpool duty.  The little experiment turned into a bigger experiment.

Screen Shot 2014-09-18 at 8.58.38 PM

Screen Shot 2014-09-18 at 9.00.37 PMEighteen of us gathered in the Art room at 7:20 this morning and another six met this afternoon. We watched Kiran bir Sethi teaches kids to take charge and sketched.

We shared our sketches and ideas in small groups and debriefed the experience.  We will try again next week. I wonder who might take action on this experiment in other venues to learn with others.

This slideshow requires JavaScript.

photo[1]


Resources shared in our session:

doodle

Visual: SMP-5 Use Appropriate Tools Strategically #LL2LU

We want every learner in our care to be able to say

I can use appropriate tools strategically.
(CCSS.MATH.PRACTICE.MP5)

Screen Shot 2014-09-12 at 6.42.42 PM

Level 4:
I can communicate details of how the chosen tools added to the solution pathway strategy using descriptive notes, words, pictures, screen shots, etc.

Level 3:
I can use appropriate tools strategically.

Level 2:
I can use tools to make my thinking visible, and I can experiment with enough tools to display  confidence when explaining how I am using the selected tools appropriately and effectively.

Level 1:
I can recognize when a tool such as a protractor, ruler, tiles, patty paper, spreadsheet, computer algebra system, dynamic geometry software, calculator, graph, table, external resources, etc., will be helpful in making sense of a problem.

Suppose you are solving an equation.

Are you practicing use appropriate tools strategically if you use the numerical solve command on your graphing calculator?

nsolve

Or what about using your calculator to substitute values of x until you find a value that makes a true statement?

Screen Shot 2014-09-14 at 4.07.28 PM Are you practicing use appropriate tools strategically if you use a computer algebra system to explain your steps? 

Screen Shot 2014-09-14 at 4.09.09 PM

Or what if you use the graphing capability of your handheld?

Screen Shot 2014-09-14 at 4.10.14 PM

Consider each of the following learning goals:

I can explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution, and I can construct a viable argument to justify a solution method.  CCSS-M A-REI.A.1.

I can solve linear equations and inequalities in one variable, including equations with coefficients represented by letters. CCSS-M A-REI.B.3.

I can explain why the x-coordinates of the points where the graphs of the equations y=(x) and y=g(x) intersect are the solutions of the equation f(x)=g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. CCSS-M A-REI.D.11.

Does use appropriate tools strategically depend on the learner? Or the learning goal? Or the teacher? Or the availability of tools?

[Cross posted on Easing the Hurry Syndrome]